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ABSTRACT   
 
The theory of the sound pressure scattered from a fluid-filled spherical shell immersed in a 
second fluid is developed for the case of ensonification with hyperbolic frequency modulated 
chirped pulses. Hyperbolic frequency modulation is also known as 'linear period modulation' and 
'logarithmic phase modulation'. The theory is used to calculate the target strength of a stainless 
steel shell filled with a mixture of Freon-113™ and ethanol, and immersed in sea water. The 
sensitivity of the target strength to pulse centre frequency, pulse bandwidth, pulse length and 
fluid temperature is examined and significant sensitivity is found in some cases, especially for 
temperature. The signal reflected by the target is shown as a function of time, and the results of 
correlating the return with a replica of the transmitted signal are also shown. Comparison is made 
with a solid stainless steel sphere and air-filled spherical shells, and similar parameter sensitivity 
is found, with the exception that their target strengths are insensitive to temperature. 
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Calculations of the Sound Scattering of Hyperbolic 
Frequency Modulated Chirped Pulses from Fluid-

filled Spherical Shell Sonar Targets    
 
 

Executive Summary    
 
Target detection range is an important parameter in sonar performance assessment. 
Ideally, assessments should be made using targets with well-known acoustic scattering 
efficiency or “target strength”.  Fluid-filled spherical shells have been used as sonar targets 
because they scatter sound independently of look direction or “aspect”, and have target 
strengths that are large in comparison to their size. Readhead (1995) studied the 
characteristics of fluid-filled shells under ensonification by continuous tones, tone bursts 
and linear frequency modulated chirped pulse waveforms. The hyperbolic frequency 
modulated chirped pulse waveform is also widely used in wideband active sonar design 
as a way of minimising the degradation of matched filter processing when the source and 
target are in relative motion.  Sonars using these waveforms are now being assessed by the 
DSTO and the Royal Australian Navy for various applications. This report extends the 
work of Readhead (op. cit.) to consider the use of fluid-filled spherical shells in assessing 
the performance of such sonars.   
 
Readhead (op. cit.) considered the acoustic scattering efficiency of fluid-filled spherical 
shells as a function of their physical parameters, including shell material, diameter, wall 
thickness and filling fluid.  This report fixes those parameters to stainless steel shells in use 
by the Commonwealth of Australia and its contractors. The shells have 20 cm diameter 
with a wall thickness of 0.9 mm, and are filled with a mixture of 68% Freon-113 and 32% 
ethanol by volume. The shells are deployed at shallow depths in sea water of 35‰ salinity, 
with temperatures varying between 5 and 35°C. The variation of the target strength is 
examined as a function of frequency up to 450 kHz, bandwidth between 1 and 50 kHz, 
pulse length between 50 s and 5 ms, and temperature between 5 and 35°C. 
 
For a fixed frequency, the target strength is insensitive to bandwidth and pulse length. 
However the target strength varies with small changes in frequency. This variation is 
higher for longer duration pulses, but is reduced as the bandwidth increases.   
 
There is some sensitivity of the target strength to water temperature. At frequencies above 
200 kHz, the variation of target strength with frequency at temperatures above and below 
20°C is quite different:  below 20°C the target strength generally increases with frequency; 
whereas above 20°C it decreases with frequency. Above 300 kHz the target strength 
generally decreases with increasing temperature, with a decline of more than 10 dB as the 
temperature increases from 5 to 35°C. 
 
Below 200 kHz, the target strength does not vary by more than a few decibels over the 
temperature range of 5 to 35°C, with the variation remaining less than 2 dB for 
temperatures between 15 and 25°C. The maximum target strength is attained at a 



 

 

temperature of about 20°C. At 100 kHz the target strength variation with temperature is 
quite smooth and it varies by no more than 1 dB between 15 and 25°C. 
 
The target strength for small bandwidth, long duration signals is strongly dependent on 
temperature, as was the case for continuous tone signals discussed in Readhead (op. cit.). 
For example, at 100 kHz a 5 ms pulse with a 1 kHz bandwidth results in a target strength 
variation of up to 3 dB over a 2°C temperature change.   
 
Solid and air-filled spheres are sometimes considered as alternate aspect-independent 
targets, and their response to hyperbolic frequency modulated chirped pulses is also 
examined. Targets considered are a solid 20 cm diameter stainless steel sphere, and air-
filled stainless steel shells of the same exterior diameter, with wall thicknesses of 0.5, 2, 5 
and 10 mm. Both types of target have considerably lower target strengths than a fluid-
filled sphere of the same diameter – in the case of the air-filled spheres, by more than 15 
dB. Although these alternate targets show almost no sensitivity of the target strength to 
water temperature, they show more sensitivity than fluid-filled spheres to small changes 
in frequency when chirped pulses are used. If the bandwidth is small, target strength 
changes of 5 – 12 dB can occur when the frequency changes by a few kilohertz. This may 
be a problem for sonars which switch between closely spaced frequency bins of narrow 
bandwidth in order to spatially resolve target returns. 
 
Examining the returned signal in the time domain, for all three target types a short pulse 
length gives the clearest returns. As the duration of the impinging signal increases there is 
overlap of signals reflected from different parts of the target.  Changing the bandwidth of 
the signal does not help to elucidate details of the target. 
 
When matched filtering is employed for target detection, it is common for a replica of the 
outgoing waveform to be cross-correlated with the reflected signal. In this case, decreasing 
the pulse length or increasing the bandwidth sharpens the range resolution for all targets. 
Increasing the pulses length makes little difference to the target strength. Increasing the 
bandwidth makes almost no difference to the target strength of the fluid-filled sphere, but 
does increase the target strength of the solid and air-filled spheres by 1 – 2 dB. 
 
In comparing fluid-filled and air-filled spheres as sonar targets, not only is the target 
strength of the former substantially higher than the latter, but the fluid-filled sphere is also 
slightly less prone to target strength variability. 
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1. Introduction  

Over the past 20 years DSTO has supplied fluid-filled spheres to the Royal Australian Navy 
and its contractors, who have used them to assess the target detection performance of high-
frequency active sonars. Readhead (1995) presented the theory describing the performance of 
the spheres, emphasising their target strength and its dependence on a selection of physical 
parameters. More recently, similar spheres have been used in trials of sonars that emit 
hyperbolic frequency modulated chirped pulses. These trials have been conducted in waters 
with a range of different temperatures. As noted in Readhead (op. cit.), the target strength of 
these types of spheres is liable to change with ambient water temperature. The degree of 
variation could potentially distort the results of sonar detection range trials.  
 
The hyperbolic frequency modulated chirp waveform, also known as a linear period 
modulated or logarithmic phase modulated chirp, is widely used in wideband active sonar 
design as a way of minimising the degradation of matched filter processing caused by 
Doppler shifting of the return signal when the source and target are in relative motion. The 
theory of Readhead (op. cit.) is extended to cover this waveform, and results are presented in a 
variety of ways. The target strength is shown for chirps of 50, 500 and 5000 s duration, 
bandwidths between 1 and 50 kHz, and water temperatures between 5 and 35°C. The signal 
reflected by the target is shown as a function of time, and the results of correlating the return 
with a replica of the transmitted signal are also shown. Comparison is also made with a solid 
sphere and air-filled spherical shells. 
 
 

2. Theory  

2.1 Geometry 

Consider a fluid medium of infinite extent whose density is 1 and which supports 
longitudinal sound waves of speed c1. A fluid-filled spherical shell is located at the origin of a 
spherical coordinate system, as shown in Figure 1. The inner and outer radii of the shell are a 
and b, respectively. The shell has a density 2 and Poisson’s ratio , and supports longitudinal 
and transverse waves of velocity cL,2 and cT,2, respectively. The interior fluid has a density of 3 
and longitudinal sound speed of c3.  
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Figure 1:  Geometry for projector, receiver and fluid-filled sphere. 
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2.2 Continuous waves 

Readhead (op. cit.) considered a point source of sound located at pr r  and 0   with respect 

to the origin. When emitting continuous sinusoidal sound waves, the incident pressure a 
distance R away in the external fluid was  

  
 ,12

0

Li ft k R

i

e
P P

R

 

  (1) 

where P0 was the amplitude of the pressure wave 1 m from the source, f was the frequency of 
the wave and kL,1 was the wavenumber in the fluid, related to the frequency by 

 ,1
1

2
.L

f
k

c


  (2) 

The time component of the waves was ignored, and the displacement component of the 
incident pressure was 

 
,1

0 .
Lik R

i

e
p P

R



  (3) 

It was shown that the scattered pressure at the listening point rr r  and r   was  

          * *
0 ,1 ,1 ,1

0

1 2 1 cos for 0
l

s L l l L p l L r l r
l

r pp P k l C h k r h k r P r r




      (4) 

where hl and Pl were spherical Hankel and Legendre functions of order l. The Cl were 
coefficients dependent on spherical Bessel, Neumann and Hankel functions, their first and 
second derivatives, and parameters f, 1, 2, 3, , a, b, c1, cL,2, cT,2 and c3.  
 
2.3 Hyperbolic frequency modulated chirped pulses 

In the above equations the point source was considered as producing sinusoidal waves. 
Readhead (op. cit.) also considered the scattered pressure from tone bursts and linear 
frequency modulated chirped pulses. The scattered pressure from hyperbolic frequency 
modulated chirped pulses will now be considered.  
 
The general equation for the pressure of a frequency modulated signal of amplitude P is 

    exp 2
t

p t P i f t dt       (5) 

where  f t  is the instantaneous frequency of the signal at time t. For a hyperbolic frequency 

modulated signal in which the frequency increases with time, Williams and Battestin (1976) 
give the instantaneous frequency as  

    
0 1

1 0
0 1

2
for

2 2 2

f f t
f t t

f f t
f f

t

t



 




   (6) 

where f0 is the start frequency, f1 is the stop frequency and t is the pulse length.  
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Figure 2: The instantaneous frequency of linear and hyperbolic frequency modulated chirped pulses of 

100 µs duration and 50 kHz bandwidth centred on 100 kHz. 
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Figure 3: The amplitude of linear and hyperbolic frequency modulated chirped pulses of 100 µs 

duration and 50 kHz bandwidth centred on 100 kHz. 
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Figure 4: The amplitude spectra of linear and hyperbolic frequency modulated chirped pulses of 5 ms 

duration and 50 kHz bandwidth centred on 100 kHz. 

 
Figure 2 plots the instantaneous frequency of a hyperbolic frequency modulated chirped pulse 
as a function of time, and compares it to the linear frequency modulated chirped pulse. In 
both cases the sweep frequency increases with time. Figure 3 compares their amplitudes as a 
function of time, and Figure 4 compares their spectra, calculated from the integrands of 
Equation 53 in Readhead (op. cit.) and Equation 11. An exact formula for the spectrum of the 
hyperbolic frequency modulated chirped pulse is also given in Kroszczyński (1969). It can be 
seen that whereas the linear frequency modulated chirped pulse has a spectrum which is 
symmetrical over the frequency band, the hyperbolic frequency modulated chirped pulse has 
an asymmetrical spectrum, although the asymmetry is less evident when the bandwidth is a 
smaller fraction of the centre frequency than shown in this figure. 
 
Performing the integration in Equation 5 and substituting into Equation 1, the pressure 
incident on the shell becomes 

      0 0 1
,1 0 1 1 0

1 0 1

2 1
exp exp 2 ln rectc

i L

P f f R
P t ik R i t f f f f t t

R f f t t c


                        
  (7) 

where  

 ,1
1

2c c
L

f
k

c


  (8) 

 0 1

0 1

2
c

f f
f

f f



 (9) 

and  
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  
1 for 1 2 1 2
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0 elsewhere

t
t

  
 
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 (10) 

The incident signal frequency components are obtained by taking the Fourier transform of 
Equation 7, or 

  
 0 1

0 1 1 0
,1 1 0

2
2 ln2 20

2
.L

f f
i t f f f f ttik R f f t i ft

i t

P
P f e e e dt

R




           


   (11) 

The scattered frequency components are 

    
 0 1

0 1 1 0
1 0

2
2 ln2 2

2

f f
i t f f f f tt f f t i ft

s s t
P f p f e e dt




          


   (12) 

where ps is given by Equation 4. The scattered pressure may then be obtained by the inverse 
Fourier transform. As a function of time 
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2.4 Target strength 

The parameters of the sonar equations (Horton, 1959), of which the target strength is one 
parameter, are normally expressed as intensities and are applicable to pulses of constant 
intensity under steady state conditions (Urick, 1962). The target strength is defined as 10 times 
the logarithm to the base 10 of the ratio of the intensity of the sound returned by the target, at 
a distance of 1 m from its acoustic centre in some direction, to the incident intensity from a 
distant source (Urick, 1983). Note that it is not a function of the return signal only, but is a 
ratio of intensities, and to make numerical sense both the incident and returned intensities 
must be calculated or measured in the same manner.  

 
In measuring a target strength, it is not practical to measure the scattered sound 1 m from the 
target’s acoustic centre. In what Urick (1983) refers to as the “conventional method” of target 
strength measurements, the measurements are made at a long range and then reduced to what 
they would be at 1 m. The long range is taken to be in the far field, where the target appears to 
reradiate as a point source of sound. The start of the far field is defined (Urick, 1983; Medwin 
and Clay, 1998) as  

 
2L

r


  (14) 

where L is the maximum dimension of the target as seen by the receiver and  is the 
wavelength of sound. Bobber (1988) uses the same equation, but notes that it is “very 
conservative”.  

 
Urick (1962) generalised the sonar equations to cover transients, and in this redefinition the 
quantities are based on the total acoustic energy associated with a pulse, rather than on the 
mean rate of energy flow. The target strength is still the long-pulse steady state quantity, and 
as pointed out by Chu and Stanton (1998), it incorporates the total scattered wave from the 
target, without distinguishing between various partial waves which might make up that 
signal. Urick’s (1962) generalised equations have been explicitly applied to wideband 
transmissions (Nelson, 1976).  
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Combining the conventional method with the generalised sonar equations, the backscattered 
target strength for a pulsed incident signal of constant amplitude is 

  
2 2 2

2
0

10log
r

p r
s r rt

r r
TS P t dt

P t





 
    

   (15) 

  and rp and rwhen   180 r are in the far field. The integration starts with the first return, 
which arrives at 

 
1

2

2
p rr r b t

t
c

  
   (16) 

In the results reported below, both rr and rp are set to 1000 m to ensure far field conditions, 
and the physical data used for 1, 2, 3, , c1, cL,2, cT,2 and c3 are as in Readhead (op. cit.). This 
equation for target strength differs somewhat from Readhead (op. cit.), who calculated the 
target strength of the most intense partial wave, a quantity termed the “effective target 
strength” by Kaduchak and Loeffler (1998).  
 
 

3. Results 

3.1 Frequency, band width and pulse length variations 

In the results which follow, three types of targets are considered, as detailed in Table 1. The 
main target considered is a spherical shell of stainless steel with a diameter of 20 cm and 0.9 
mm wall thickness. This shell is filled with a mixture of 68% Freon-113 and 32% ethanol by 
volume. This target will be referred to as the ‘fluid-filled sphere’. Comparison is made to two 
other types of target. One is a solid stainless steel sphere of 20 cm diameter. This will be 
referred to as the ‘solid sphere’. As air-filled shells are often used as aspect-independent 
targets in sonar trials, this will be the third type of target used for comparison. In this case, a 
spherical shell of stainless steel with a diameter of 20 cm is considered. Due to the 
characteristics of the backscattering performance of this type of target, four wall thicknesses 
will be considered, viz. 0.5, 2, 5 and 10 mm. These targets will be referred to as the ‘0.5 mm 
air-filled sphere’, ‘2 mm air-filled sphere’, etc. In all cases, the targets are assumed to be 
situated in shallow depths in sea water of 35‰ salinity. The projector and receiver are 
collocated 1000 m from the target; that is, only backscattered cases will be considered.  
 
Table 1: Physical properties of the stainless steel spheres. 

Interior Diameter 
(cm) 

Wall thickness 
(mm) 

Name 

68% Freon-113 + 32% ethanol 20 0.9 Fluid-filled sphere 
Solid 20 100 Solid sphere 
Air 20 0.5 0.5 mm air-filled sphere 
Air 20 2 2 mm air-filled sphere 
Air 20 5 5 mm air-filled sphere 
Air 20 10 10 mm air-filled sphere 
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Figure 5 overlays six sets of calculated target strength values for a fluid-filled sphere deployed 
in sea water with an ambient temperature of 20°C. The target strength was calculated for 
continuous ensonification with a pure tone in 100 Hz steps from 100 Hz to 500 kHz. The target 
strength is also shown for 50, 500 and 5000 µs hyperbolic frequency modulated chirps of 1 and 
10 kHz bandwidth centred on frequencies taken in 1 kHz steps to 450 kHz.  

 
As noted in Readhead (op. cit.) the target strength for continuous tones varies greatly with 
small changes in frequency, is low for frequencies such that ,1 4Lk a 


, and takes on an 

oscillatory nature at high frequencies. The target strength varies much less for pulses of short 
duration or wide bandwidth, but oscillatory characteristics are evident at the highest 
frequencies in the range, except for the shortest duration chirped pulse.  
 
Note that for long duration chirped pulses of relatively narrow bandwidth, there is significant 
variation of target strength with small changes of frequency. This may be a problem when the 
objective is to assess the target detection performance of sonars which switch between closely 
spaced frequency bins of narrow bandwidth in order to spatially resolve target returns.  
 
For comparison, Figure 6 shows the target strength values for tone burst signals of 50, 500 and 
5000 µs duration, overlaid on the continuous tone data. Again the longest duration tone burst 
produces the most variable target strength values.  
 

0 50 100 150 200 250 300 350 400 450 500
-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (kHz)

T
ar

ge
t 

st
re

n
gt

h
 (d

B
)

Continuous

5 ms, 1 kHz

5 ms, 10 kHz

500 µs, 1 kHz

500 µs, 10 kHz

50 µs, 1 kHz

0 50 100 150 200 250 300 350 400 450 500
-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (kHz)

T
ar

ge
t 

st
re

n
gt

h
 (d

B
)

Continuous

5 ms, 1 kHz

5 ms, 10 kHz

500 µs, 1 kHz

500 µs, 10 kHz

50 µs, 1 kHz

 
Figure 5: Target strength of a fluid-filled sphere for continuous tones and for 1 and 10 kHz 

bandwidth hyperbolic frequency modulated chirps of 50 µs, 500 µs and 5 ms duration. 
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Figure 6: Target strength of a fluid-filled sphere for continuous tones and for 50 µs, 500 µs and 5 ms 

tone bursts. 

 
In order to understand why the target strength varies with pulse length, pulse type and 
bandwidth, it is necessary to consider the spectrum of frequencies impinging upon the target. 
Figures 7 to 9 show spectra for pulse lengths of 50, 500 and 5000 µs, respectively, for tone 
bursts, and linear and hyperbolic frequency modulated chirped pulses of 10 kHz bandwidth. 
In each case, the amplitude of the signal is constant at 1 (arbitrary units) and the centre 
frequency is 250 kHz. The spectra for the tone bursts, and linear and hyperbolic frequency 
modulated chirped pulses were calculated from the sinc function in Equation 48 and the 
integrand of Equation 53 in Readhead (op. cit.), and the integrand of Equation 11, respectively. 
Unlike the spectra shown in Figure 4, for which the bandwidth was 50 kHz, there is almost no 
difference between the spectra for linear and hyperbolic frequency modulated chirped pulses 
for a bandwidth of 10 kHz. Also, for a pulse length of 50 µs, even the tone burst has a similar 
spectrum. At this pulse length, all pulse types have considerable energy in the side lobes 
many tens of kilohertz away from the centre frequency. The target strength will be an 
integration of backscattered returns over a broad range of frequencies, and will vary smoothly 
with changes in the centre frequency. As the pulses length increases, the energy in the side 
lobes decreases and that in the main lobe increases, with the effect being more pronounced for 
the tone burst. The integration is now over a narrower band of frequencies and so the target 
strength tends to follow the variations evident for continuous tones. 
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Figure 7: The amplitude spectra of a tone burst, and linear and hyperbolic frequency modulated 

chirped pulses of 10 kHz bandwidth. The pulses are centred on 250 kHz and are of 50 µs 
duration. The curves for the linear and hyperbolic frequency modulated chirped pulses 
overlie each other. 
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Figure 8: The amplitude spectra of a tone burst, and linear and hyperbolic frequency modulated 

chirped pulses of 10 kHz bandwidth. The pulses are centred on 250 kHz and are of 500 µs 
duration. The curves for the linear and hyperbolic frequency modulated chirped pulses 
almost overlie each other. 
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Figure 9: The amplitude spectra of a tone burst, and linear and hyperbolic frequency modulated 

chirped pulses of 10 kHz bandwidth. The pulses are centred on 250 kHz and are of 5 ms 
duration. 

 
Figure 10 compares the “normal” target strength of the complete return signal calculated 
using Equation 15 and the “effective” target strength of the most intense partial wave as 
calculated from Equation 59 in Readhead (op. cit). The calculations have been performed for 
the same hyperbolic frequency modulated chirps shown in Figure 5. In all cases the 
“effective” target strength is less, with the difference being a function of frequency and pulse 
length. The most extreme difference occurs around 300 kHz and is approximately 4 dB for  50 
µs and 500 µs  pulses, and 0.9 dB for  5 ms pulses. At 100 kHz the greatest difference is 
approximately 0.5 dB. It is to be expected that the “effective” target strength will be less as the 
integration of the return signal is over a shorter period of time than for the “normal” target 
strength, whereas the integration of the incident signal is the same for both the “normal” and 
“effective” target strengths. Examination of the return signals in the time domain, given in 
section 3.2, also explains why the difference is a function of pulse length. For the shorter 
pulses, the partial waves are clearly separated, so an integration over the most intense partial 
wave omits the energy contained in the other discrete partial waves. For the 5 ms pulse most 
of the partial waves overlap, so the integration captures most of the energy.  
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Figure 10: “Normal” and “effective” target strength of a fluid-filled sphere for 1 and 10 kHz 

bandwidth hyperbolic frequency modulated chirps of 50 µs, 500 µs and 5 ms duration. The 
normal target strength is calculated from the full return; whereas the effective target 
strength is calculated from the most intense partial wave. 

 
In an experimental measurement of the target strength the value obtained will lie somewhere 
between the “normal” and “effective” target strength, as it will be difficult to distinguish 
between partial waves of low intensity, and reverberation and/or electronic noise in the 
recording system. Hence it will be necessary to end the integration of the return signal 
prematurely to avoid contamination by these other sources. 
 
For the calculations reported in Figure 5, the bandwidth of the chirped pulses was held 
constant as the centre frequency varied. Returning to “normal” target strengths, Figure 11 
presents results when the bandwidth is a constant percentage of the centre frequency, in this 
case 5 and 30%. With the percentages chosen the target strength varies quite smoothly with 
changes in centre frequency, however for the wider bandwidth the oscillations above 350 kHz 
no longer match those for continuous tones. This asynchronous behaviour is examined in 
more detail in Figure 12, which plots the target strength when the bandwidth varies between 1 
and 30% of the centre frequency. As might be expected, the narrow bandwidths are associated 
with more variability in target strength with small changes in centre frequency, and the 
oscillations above 350 kHz closely follow the continuous tone case. As the bandwidth is 
increased the target strength becomes a smoother function of centre frequency, but the 
frequency of the oscillations diverge as a greater spectrum of frequencies impinge upon the 
target. 
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Figure 11: Target strength of a fluid-filled sphere for continuous tones and for hyperbolic frequency 

modulated chirps with bandwidths of 5 and 30% of the centre frequency and of 500 µs and 
5 ms duration. 
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Figure 12: Target strength of a fluid-filled sphere for 500 µs long hyperbolic frequency modulated 

chirps with bandwidths of 1, 2 5, 10, 20 and 30% of the centre frequency. 
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A comparison of the target strength of a fluid-filled sphere is now made with the target 
strength of two other types of spherical target:  a solid sphere and air-filled spheres. The target 
strength of a solid sphere is shown in Figure 13, both for continuous tones and hyperbolic 
frequency modulated chirps. Overall, the target strengths are lower than for a fluid-filled 
sphere at almost all frequencies. The change of target strength with frequency is quite 
periodic, the small-scale periodicity being noted by Hickling (1962). His analysis did not 
extend to high enough frequencies to also observe the larger-scale periodicity. It is to be noted 
that the target strength of the fluid-filled sphere for chirped waveforms shows considerably 
less oscillatory behaviour.  
 
Air-filled spheres are commonly used as targets in sonar trials. The target strength of an ideal 
rigid sphere, given by Urick (1983) as 

 
2

10 log
4

b
TS

 
  

 
 , (17) 

is commonly assumed for air-filled spheres. However, as Hickling (1964) showed for 
evacuated and water-filled shells with wall thicknesses greater than 1 20th  of the outer 
radius, the echo returned by a tone burst  varies in time, and is a function of the frequency and 
wall thickness. In practice, a variety of wall thicknesses is used in sonar trials. For example, 
Kessel and Hollett (2008) used a steel sphere of 1 m diameter and 3 cm wall thickness; 
Trevorrow (2005) used an air-filled steel sphere of 0.914 m diameter and 6.4 mm wall 
thickness. Thinner walls can also be used, although they can be subject to damage, either 
during deployment or from the external water pressure. Standards Australia (1997) give 
formulae for calculating the minimum wall thickness of a spherical shell subject to external 
pressure.  
 
Figures 14 to 17 show the target strength of air-filled stainless steel spheres of 20 cm diameter, 
for wall thicknesses of 0.5, 2, 5 and 10 mm, respectively. Again, at most frequencies, the target 
strengths are lower than for the fluid-filled sphere. For the 0.5 mm air-filled sphere the target 
strength for continuous tones is relatively constant, but has excursions at regular intervals, 
especially below 200 kHz. Excursions also occur for chirps with a bandwidth of 1 kHz and 
pulse lengths longer than 500 µs. The 2 mm air-filled sphere also has the excursions, which for 
pulsed signals extend to the highest frequencies calculated. However, the most prominent 
feature is a broad peak centred on 165 kHz, for which the target strengths reach 10 dB above 
the mean value elsewhere. The 5 mm air-filled sphere shows similar features, with the 
excursions more frequent and intense, and the broad peak centred on 58 kHz. For the 10 mm 
air-filled sphere the mean target strength is a few dB higher and fluctuates, and the excursions 
are more frequent and intense. They are quite periodic, in common with Figure 5 of Hickling 
(1964). The broad peak is less intense and now centred on 27 kHz, and another broad peak 
some 5 dB above the nearby mean target strength has appeared at 268 kHz.  
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Figure 13: Target strength of a solid sphere for continuous tones and for 1 and 10 kHz bandwidth 

hyperbolic frequency modulated chirps of 50 µs, 500 µs and 5 ms duration. 

 
Two distinct features of air-filled spheres are to be noted. The regularly spaced excursions 
evident with continuous tone ensonification are due to Lamb waves propagating on the 
surface of the shell (Gaunaurd and Werby, 1991). These narrow resonances also occur for 
chirps of relatively narrow bandwidth, and for all but the shortest duration. They lead to a 
significant variation of target strength with small changes of frequency. The variation becomes 
more extreme as the wall thickness increases. Care should therefore be exercised when using 
such a target to assess the range detection performance of a sonar that switches between 
closely spaced frequency bins. If the target strength is (incorrectly) assumed constant, the 
detection range will appear to vary significantly between the frequency bins. 
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Figure 14: Target strength of an air-filled stainless steel spherical shell of 20 cm diameter and 0.5 mm 

wall thickness for continuous tones and for 1 and 10 kHz bandwidth hyperbolic frequency 
modulated chirps of 50 µs, 500 µs and 5 ms duration. 
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Figure 15: Target strength of an air-filled stainless steel spherical shell of 20 cm diameter and 2 mm 

wall thickness for continuous tones and for 1 and 10 kHz bandwidth hyperbolic frequency 
modulated chirps of 50 µs, 500 µs and 5 ms duration. 
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Figure 16: Target strength of an air-filled stainless steel spherical shell of 20 cm diameter and 5 mm 

wall thickness for continuous tones and for 1 and 10 kHz bandwidth hyperbolic frequency 
modulated chirps of 50 µs, 500 µs and 5 ms duration. 
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Figure 17: Target strength of an air-filled stainless steel spherical shell of 20 cm diameter and 10 mm 

wall thickness for continuous tones and for 1 and 10 kHz bandwidth hyperbolic frequency 
modulated chirps of 50 µs, 500 µs and 5 ms duration. 
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The broad peaks observed for the 2, 5 and 10 mm air-filled spheres are resonances due to 
flexural waves. They occur near what is termed the “coincidence frequency”, when the phase 
velocity of the flexural waves in the shell is about equal to the speed of sound in the ambient 
water. Werby found that the Mindlin – Timoshenko thick plate theory (Ross, 1976) was quite 
reliable in predicting the phase velocity for the curved surfaces of thin spherical shells. 
Equations for the phase velocity are given in Ross (1976), and repeated in a series of papers by 
Werby and colleagues (e.g., Werby, 1990; Werby and Gaunaurd, 1991; Werby and Chin-Bing, 
1991; Werby and Gaunaurd, 1992). On the low frequency shoulders of these broad resonance 
peaks, there are a series of narrow resonances known as “leaky pseudo-Stoneley resonances” 
or “Junger-type resonances” (Gaunaurd and Werby, 1991). They are due to a surface wave 
which occurs at the interface of an elastic plate which is fluid-loaded on only one side.  
 
Previous studies of these various resonances have usually only considered continuous tones 
as the exciting source. When narrow bandwidth chirps are used, all resonances are present. 
When wide bandwidth chirps are used, the Lamb and Junger-type resonances are not evident, 
however, the flexural resonance remains.  
 
Next, the variation of target strength with pulse length and bandwidth is considered. 
Selecting a frequency of 100 kHz and bandwidth of 10 kHz, the variation of target strength 
with the pulse length of the hyperbolic frequency modulated chirp is shown in Figure 18 for a 
fluid-filled, solid and 5 mm air-filled sphere. The variations are generally small, with the 
target strength contained within a band of 0.4 dB for the fluid-filled sphere and 0.6 dB for the 
other targets. The variations for the solid sphere might be expected from the experimental 
measurements of Hampton and McKinney (1961) on solid metal spheres.  
 
In Figure 19, target strengths have been calculated for the same targets with hyperbolic 
frequency modulated chirps of 500 µs duration, with bandwidths of up to 50% of the centre 
frequency. The centre frequency in this case was 100 kHz. Again the target strength of the 
fluid-filled sphere is fairly constant. The 5 mm air-filled sphere shows a modest increase of 
1 dB in the target strength as the bandwidth increases to 15 kHz, but remains fairly constant 
for larger bandwidths. The solid sphere shows a similar variation over a broader range of 
bandwidths, but generally an increase of the target strength with increasing bandwidth.  
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Figure 18: Target strength of fluid-filled, solid and 5 mm air-filled spheres. The targets are exposed to 

hyperbolic frequency-modulated chirped waveforms of 10 kHz bandwidth centred on 
100 kHz, with pulse lengths between 50 µs and 5 ms. Note the break in the ordinate 
axis. 
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Figure 19: Target strength of fluid-filled, solid and 5 mm air-filled spheres. The targets are exposed to 

hyperbolic frequency-modulated chirped waveforms of 500 µs duration, with the indicated 
bandwidth centred on 100 kHz. Note the break in the ordinate axis. 
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3.2 Signals in the time domain 

Figures 20 to 25 show the reflected signal in the time domain, where 0 ms corresponds to the 
arrival of the first portion of the reflected signal at the receiver. The pressure is relative to a 
value of 1 at the projector. In Figures 20 to 22 the waves impinge upon a fluid-filled sphere. 
Overlain in Figure 20 are the reflected signals when the projector emits hyperbolic frequency 
modulated chirps of 1 kHz bandwidth centred on 100 kHz, and of 50 µs, 500 µs and 5 ms 
duration. Returns separated in time are most clearly seen for the shorter pulses. The most 
intense signal corresponds to the focused reflection from the rear of the sphere, which arrives 
0.47 ms after the specular reflection from the front surface. Subsequent reflections are related 
to multiple internal reflections within the sphere. As the duration of the impinging signal 
increases, there is overlap of signals returning from different parts of the sphere, but that from 
the rear surface still dominates. The same comments apply to Figures 21 and 22, where the 
bandwidth is increased to 10 and 50 kHz, respectively. However the longest duration chirps 
result in quite complex returns.  
 
As a comparison, Figures 23 to 25 show the reflected signals from a solid and a 5 and 10 mm 
air-filled sphere, respectively. For each target the projector emitted hyperbolic frequency 
modulated chirps of 50 kHz bandwidth centred on 100 kHz, and of 50 µs, 500 µs and 5 ms 
duration. For the solid spherical target, the strong specular return from the front surface 
dominates the reflected signal for the shortest-duration chirp. However, for chirps whose 
duration is long compared to the transit time across the sphere, the superposition of reflected 
signals leads to a complex return. For the air-filled spheres the strong specular reflection is 
followed by a wave traversing the water and coupling into the thick shell material, travelling 
circumferentially around it and being emitted back into the water in the direction of the 
receiver. This second return is stronger for the sphere with the thicker shell. It commences 
approximately 180 µs after the start of the specular return, and since the specular return lasts 
500 µs, it is superposed upon it, leading to periodic doubling and zeroing of the magnitude of 
the pressure with time. 
 
Comparing all the returns in the time domain, if no further signal processing is employed, 
there is an advantage in using short pulses to elucidate details of the target’s structure, but 
little is gained by increasing the bandwidth of the transmitted signal.  
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Figure 20: The reflected signal arriving at the receiver from a fluid-filled sphere. The projector 

emitted 1 kHz bandwidth hyperbolic frequency modulated chirps centred on 100 kHz and 
of 50 µs, 500 µs and 5 ms duration. 
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Figure 21: The reflected signal arriving at the receiver from a fluid-filled sphere. The projector 

emitted 10 kHz bandwidth hyperbolic frequency modulated chirps centred on 100 kHz and 
of 50 µs, 500 µs and 5 ms duration. 
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Figure 22: The reflected signal arriving at the receiver from a fluid-filled sphere. The projector 

emitted 50 kHz bandwidth hyperbolic frequency modulated chirps centred on 100 kHz and 
of 50 µs, 500 µs and 5 ms duration. 
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Figure 23: The reflected signal arriving at the receiver from a solid sphere. The projector emitted 

50 kHz bandwidth hyperbolic frequency modulated chirps centred on 100 kHz and of 50 µs, 
500 µs and 5 ms duration. 
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Figure 24: The reflected signal arriving at the receiver from a 5 mm air-filled sphere. The projector 

emitted 50 kHz bandwidth hyperbolic frequency modulated chirps centred on 100 kHz and 
of 50 µs, 500 µs and 5 ms duration. 
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Figure 25: The reflected signal arriving at the receiver from a 10 mm air-filled sphere. The projector 

emitted 50 kHz bandwidth hyperbolic frequency modulated chirps centred on 100 kHz and 
of 50 µs, 500 µs and 5 ms duration. 
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3.3 Matched filter processing 

However, to improve the detection performance of a sonar, almost certainly some signal 
processing will be attempted. The effect of signal processing is not included in the target 
strength parameter of the sonar equation, but incorporated in the detection threshold 
parameter. Dawe (1997) shows how different detection and signal processing techniques affect 
this latter parameter. In one common signal processing technique, a replica of the outgoing 
waveform is used in a matched filtering process for detection. The transmitted signal is cross-
correlated with the reflected signal, and a sharp peak in the correlation occurs at the temporal 
location of the main return from the target. Other returns from the target lead to further peaks 
in the correlation.  
 
The result of such a correlation is considered in Figures 26 and 27 for a fluid-filled sphere. In 
Figure 26, the effect of changing the duration of a hyperbolic frequency modulated chirped 
pulse is shown for a waveform with a bandwidth of 10 kHz centred on 100 kHz. For a 50 µs 
pulse the strongest correlation coincides with the return from the rear of the sphere. As the 
pulse length increases this reflection provides the strongest correlation, but the complex 
return results in other strong correlations. Figure 27 shows the effect of changing the 
bandwidth for a pulse of 500 µs duration. Increasing the bandwidth leads to a sharper 
correlation, and hence, increased range resolution.  
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Figure 26: The normalised envelope of the cross-correlation between a replica of the signal sent from a 

projector and the signal arriving at a receiver from a fluid-filled sphere. The projector 
emitted 10 kHz bandwidth hyperbolic frequency modulated chirps centred on 100 kHz and 
of 50 µs, 500 µs and 5 ms duration. 
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Figure 27: The envelope of the cross-correlation between a replica of the signal sent from a projector 

and the  signal arriving at a receiver from a fluid-filled sphere. The projector emitted 
500 µs hyperbolic frequency modulated chirps with bandwidths of 1, 10 and 50 kHz centred 
on 100 kHz. 

 
Comparison is made in Figures 28 and 29 of the effect of bandwidth on the correlation for a 
solid and a 10 mm air-filled sphere, respectively. The transmitted signal is of 500 µs duration, 
with bandwidths of 1, 10 and 50 kHz, centred on 100 kHz. For both targets, the correlation 
sharpens with increased bandwidth, but in neither case is the correlation as sharp as for the 
fluid-filled sphere.  
 
The sharpness of the correlation of the most intense peak is shown in Figure 30. The full width 
at half maximum of the envelope of this peak is plotted as a function of bandwidth for a fluid-
filled, a solid and a 10 mm air-filled sphere. The transmitted signal is of 500 µs duration, with 
bandwidths of 1 to 50 kHz centred on 100 kHz. The steps at 11 and 29 kHz for the 10 mm air-
filled and solid targets are due to the resolution of a broad peak into two narrower component 
peaks. The inset plots the same data on logarithmic axes, and clearly shows the inverse 
relationship between bandwidth and temporal resolution above a bandwidth of several 
kilohertz. Below a bandwidth of 10 kHz, the fluid-filled sphere has the sharpest correlation, 
but above 30 kHz there is little difference between the three targets. 
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Figure 28: The envelope of the cross-correlation between a replica of the signal sent from a projector 

and the signal arriving at a receiver from a solid sphere. The projector emitted 500 µs 
hyperbolic frequency modulated chirps with bandwidths of 1, 10 and 50 kHz centred on 
100 kHz. 
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Figure 29: The envelope of the cross-correlation between a replica of the signal sent from a projector 

and the signal arriving at a receiver from a 10 mm air-filled sphere. The projector emitted 
500 µs hyperbolic frequency modulated chirps with bandwidths of 1, 10 and 50 kHz centred 
on 100 kHz. 
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Figure 30: The full width at half maximum of the most intense peak in the envelope of the correlation 

between a replica of the signal sent from a projector and the signal arriving at a receiver. 
The targets are a fluid-filled, solid and 10 mm air-filled sphere. The targets are exposed to 
hyperbolic frequency-modulated chirped waveforms of 500 µs duration, with the indicated 
bandwidth centred on 100 kHz. The inset shows the same data on logarithmic axes. 

 
Figures 31 and 32 compare the envelopes of the return signals and replicate cross-correlations 
for 500 µs hyperbolic frequency modulated chirps with bandwidths of 10 and 50 kHz, 
respectively, centred on 100 kHz. The target is the fluid-filled sphere. The start of each partial 
wave is clearly shown by a spike in the cross-correlation, but the details of the partial wave 
are lost. These results are expected as cross-correlation using chirped signals leads to pulse 
compression. In Figure 33, the bandwidth is 50 kHz and the target is the 10 mm air-filled 
sphere. The start of the specular return and circumferentially travelling wave are clearly seen 
in the cross-correlation, but details of the superposition of the two between 180 and 500 µs are 
absent. This is a region where the phase of the return signal is changing rapidly, as seen in 
Figure 34, which plots the pressure envelope, and the phase difference between the return and 
replicate of the transmitted signal over this time period. Also note that the nulls in the 
pressure correspond to the most rapid phase changes.  
 

 
26 



 
DSTO-RR-0351 

-0.5 0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ms)

A
rb

it
ra

ry
 u

n
it

s

 

 
Pressure
Cross-correlation

 
Figure 31: The envelope of the reflected signal arriving at the receiver from a fluid-filled sphere, and 

the envelope of the cross-correlation between it and a replica of the signal sent from a 
projector. The projector emitted 500 µs hyperbolic frequency modulated chirps with a 
bandwidth of 10 kHz centred on 100 kHz. 
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Figure 32: The envelope of the reflected signal arriving at the receiver from a fluid-filled sphere, and 

the envelope of the cross-correlation between it and a replica of the signal sent from a 
projector. The projector emitted 500 µs hyperbolic frequency modulated chirps with a 
bandwidth of 50 kHz centred on 100 kHz. 
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Figure 33: The envelope of the reflected signal arriving at the receiver from a 10 mm air-filled 

sphere, and the envelope of the cross-correlation between it and a replica of the signal sent 
from a projector. The projector emitted 500 µs hyperbolic frequency modulated chirps with 
a bandwidth of 50 kHz centred on 100 kHz. 
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Figure 34: The first 500 µs of the envelope of the reflected signal arriving at the receiver from a 10 mm 

air-filled sphere, and the phase difference between it and a replica of the signal sent from a 
projector. The projector emitted 500 µs hyperbolic frequency modulated chirps with a 
bandwidth of 50 kHz centred on 100 kHz. 
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3.4 Temperature variations 

Attention is now given to the effect of temperature on target strength. For most targets the 
effect is negligible, as, for example, shown in Figure 35, which plots the target strength of a 
5 mm air-filled sphere as a function of frequency for water temperatures of 20 and 30°C. 
However, as noted in Readhead (op. cit.) a fluid-filled sphere does exhibit considerable 
variation of the target strength with temperature. This is because the focusing effect of the 
fluid-filling is sensitive to the refractive index, which changes with temperature. The extent is 
quantified in the following figures, all of which refer to the fluid-filled sphere.  
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Figure 35: Variation of target strength with frequency for a 5 mm air-filled sphere deployed in sea 

water of 20 and 30°C. The incoming waves are 10 kHz bandwidth hyperbolic frequency 
modulated chirps of 500 µs duration. 

 
Figures 36 and 37 display the target strength as a function of frequency to 450 kHz for water 
temperatures of 5, 10, 15, 20, 25, 30 and 35°C. It is assumed that the water and internal fluid 
have reached thermal equilibrium. In Figure 36 the projector emits 5 ms hyperbolic frequency 
modulated chirps of 10 kHz bandwidth. In Figure 37 the bandwidth is 10% of the centre 
frequency. The same variability as in Figure 5 is seen in Figure 36. In Figure 37 the variability 
falls with increasing frequency, due to the increasing bandwidth (in comparison to Figure 36), 
but the overall trends are similar. From both figures it can be seen that at frequencies above 
200 kHz, the behaviour of the target strength for water temperatures above and below 20°C is 
quite different. Below 20°C the target strength generally increases with frequency; whereas 
above 20°C it decreases.  
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Figure 36: Variation of target strength with frequency for a fluid-filled sphere at 5, 10, 15, 20, 25, 30 

and 35°C. The incoming waves are 10 kHz bandwidth hyperbolic frequency modulated 
chirps of 5 ms duration. 

 

0 50 100 150 200 250 300 350 400 450
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Frequency (kHz)

T
ar

ge
t s

tr
en

g
th

 (d
B

)

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400 450
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Frequency (kHz)

T
ar

ge
t s

tr
en

g
th

 (d
B

)

5

10

15

20

25

30

35

 
Figure 37: Variation of target strength with frequency for a fluid-filled sphere at 5, 10, 15, 20, 25, 30 

and 35°C. The incoming waves are hyperbolic frequency modulated chirps of 5 ms duration 
with bandwidths of 10% of the centre frequency. 
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Similar data are presented in a different manner in Figure 38, where target strength is plotted 
as a function of water temperature for centre frequencies from 50 to 450 kHz in 50 kHz steps. 
In this case, the projector emits 500 s hyperbolic frequency modulated chirps with 
bandwidths of 10% of the centre frequency. Below 200 kHz, the target strength does not vary 
by more than a few decibels over this wide temperature range. The maximum target strength 
is attained at a temperature of about 20°C, and decreases as the temperature departs from this 
value. Above 300 kHz, the target strength generally decreases with increasing temperature, 
with a decline of more than 10 dB. 
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Figure 38: Variation of target strength with temperature for a fluid-filled sphere. The incoming waves 

are hyperbolic frequency modulated chirps of 500 s duration, with bandwidths of 10% 
centred on frequencies of 50, 100, 150, 200, 250, 300, 350, 400 and 450 kHz. 
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Figure 39 plots the target strength for frequencies of 50, 100, 150 and 200 kHz between 15 and 
25°C. The projector emits 500 s hyperbolic frequency modulated chirps of 1 kHz bandwidth, 
a narrow bandwidth chosen to accentuate variations. However, the data demonstrate that if 
such a fluid-filled sphere is used within this temperature range at frequencies below 200 kHz, 
the target strength variation remains within a range of less than 1.5 dB.  
 
However, the variability of target strength with temperature is in part due to the pulse type 
used, as might be expected from the data displayed in Figure 5. Figure 40 plots target strength 
versus water temperature for incoming waves of 1 and 10 kHz bandwidth hyperbolic 
frequency modulated chirps of 500 µs and 5 ms duration centred on 100 kHz. As might be 
expected small bandwidth signals of long duration produce great variability. For the other 
pulse types the variation of target strength with temperature is quite smooth and if water 
temperatures are restricted to a range of 15 – 25°C, the target strength varies by no more than 
1 dB.  
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Figure 39: Variation of target strength with temperature for a fluid-filled sphere. The incoming waves 

are 1 kHz bandwidth hyperbolic frequency modulated chirps of 500 s duration centred on 
frequencies of 50, 100, 150 and 200 kHz. 
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Figure 40: Variation of target strength with temperature for a fluid-filled sphere. The incoming waves 

are 1 or 10 kHz bandwidth hyperbolic frequency modulated chirps of 500 µs and 5 ms 
duration centred on 100 kHz. 

 
 

4. Conclusion 

Target strengths have been calculated for changes in frequency, pulse length, bandwidth and 
temperature for a fluid-filled sphere. Comparison has also been made with a solid sphere and 
air-filled spheres.  
 
As seen in Readhead (op. cit.), the target strength of a fluid-filled sphere for continuous tones 
varies greatly with frequency, but for chirped pulses the variations are much less. Below 
350 kHz, these variations are typically within a 0.4 dB wide band, but this band increases to as 
much as 4 dB for long chirps of narrow frequency bandwidth, such as 1 kHz. The solid and 
air-filled spheres show less variation for continuous tones, but in some cases, more variation 
for chirps. A solid sphere has target strength variations contained within a 1 dB wide band for 
wide bandwidth chirped pulses, but this band increases to 10 dB for narrow bandwidth 
chirps. For an air-filled sphere, these variations are sensitive to shell wall thickness. Typically 
they are contained within a 1 dB wide band, which increases to as much as 12 dB for narrow 
bandwidth chirps. Caution should then be used when interpreting results from a sonar which 
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switches between closely spaced frequency bins of narrow bandwidth to spatially resolve 
target returns.  
 
However, unlike the solid and air-filled spheres, the target strength of a fluid-filled sphere 
does show sensitivity to ambient water temperature. As the temperature increases above 
20°C, the target strength generally declines. As the temperature falls below 20°C the 
behaviour is mixed, with the target strength decreasing at frequencies below 200 kHz, and 
increasing at higher frequencies. Between 5 and 35°C these target strength variations may be 
spread over a band as wide as 12 dB, which decreases to 6 dB if the water temperature is 
restricted to between 15 and 25°C, and further decreases to 1.5 – 4 dB for frequencies below 
200 kHz.  
 
In comparing fluid-filled and air-filled spheres as sonar targets, firstly it is to be noted that the 
target strength of the former is substantially higher than the latter. Thus a much larger air-
filled sphere is required to achieve the same target strength, thereby increasing deployment 
complexity.  
 
In a sonar detection trial using spheres as the targets, it is likely that the target strength of the 
“wrong” temperature, and at a “nearby” frequency will be used. For frequencies below 
200 kHz and ambient water temperatures between 15 and 25°C, the target strength of a fluid-
filled sphere may be in error by 0.4 – 4 dB. For an air-filled sphere, the error may be 1 – 12 dB.  
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6. Errata 

Four equations in Appendix C of Readhead (1995) contain typographical errors, in which an 
exponent 2 is missing. These equations should be: 
 

  (C25)       2

53 1 2T l T l Tk b j k b l l j k b       

  (C26)       2

54 1 2T l T l Tk b n k b l l n k b       

  (C29)       2

63 1 2T l T l Tk a j k a l l j k a       

  (C30)       2

64 1 2T l T l Tk a n k a l l n k a       
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